Exercise 4

Find the general solution for the following second order ODEs:

$$
u^{\prime \prime}-2 u^{\prime}=0
$$

Solution

This is a homogeneous linear ODE with constant coefficients, so the solution is of the form, $u=e^{r x}$.

$$
u=e^{r x} \quad \rightarrow \quad u^{\prime}=r e^{r x} \quad \rightarrow \quad u^{\prime \prime}=r^{2} e^{r x}
$$

Substituting these into the equation gives us

$$
r^{2} e^{r x}-2 r e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-2 r=0
$$

Factor the left side.

$$
r(r-2)=0
$$

$r=0$ or $r=2$. Therefore, the general solution is

$$
u(x)=C_{1}+C_{2} e^{2 x} .
$$

We can check that this is the solution. The first and second derivatives are

$$
\begin{aligned}
u^{\prime} & =2 C_{2} e^{2 x} \\
u^{\prime \prime} & =4 C_{2} e^{2 x}
\end{aligned}
$$

Hence,

$$
u^{\prime \prime}-u^{\prime}-2 u=C_{1} e^{-x}+4 C_{2} e^{2 x}-\left(-C_{1} e^{-x}+2 C_{2} e^{2 x}\right)-2\left(C_{1} e^{-x}+C_{2} e^{2 x}\right)=0,
$$

which means this is the correct solution.

